Correlation Between Indoxyl Sulfate in Chronic Kidney Disease and Olfactory Dysfunction

Document Type : Original

Authors

1 Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No. 5, Medan, 20155, INDONESIA.

2 Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No. 5, Medan 20155, INDONESIA

3 Department of Community Medicine, Faculty of Medicine, Universitas Sumatera, Utara, Jl. Dr. Mansur No. 5, Medan, 20155, INDONESIA.

10.22038/ijorl.2024.77737.3632

Abstract

Introduction:
Olfactory dysfunction is prevalent among individuals with chronic kidney disease (CKD), with prevalence escalating alongside disease severity. The uremic toxin we observed in this study is Indoxyl sulfate (IS), a potent uremic toxin that markedly accumulates in the plasma of patients with chronic insufficiency. Olfactory damage may occur in the setting of neuronal damage due to renal failure.
 
Materials and Methods:
27 patients, a total sample in this study with diagnosed chronic kidney disease within stage 5 on regular hemodialysis, were examined for indoxyl sulfate levels in blood plasma and then examined for their olfactory function using the Sniffin’ Sticks test. A correlation analysis was conducted between indoxyl sulfate levels and olfactory function test results in patients with CKD.
 
Results:
The Pearson correlation test revealed a strong, significant negative correlation between indoxyl sulfate levels and olfactory function (r = -0.613; p = 0.001). Additionally, correlations were found between indoxyl sulfate levels and each component of olfactory function: threshold value (r = -0.408; p = 0.035), discrimination (r = -0.807; p = 0.001), and identification (r = -0.703; p = 0.001).
 
Conclusion:
Olfactory function is compromised in individuals with chronic renal disease and correlates with the level of accumulation of the uremic toxin indoxyl sulfate.

Keywords

Main Subjects


  1. Robles-Osorio ML, Corona R, Morales T, Sabath E. Chronic kidney disease and the olfactory system. Nefrologia. 2020;40(2):120–125.doi: 10. 1016/j. nefro.2019.04.009
  2. Yusuf T, Raji YR, Daniel A, Bamidele OT, Fasunla AJ, Lasisi OA. Effect of Chronic Kidney Disease on Olfactory Function: A Case – Control Study. Ear, Nose & Throat Journal. 2021;1–5. doi: 10.1177/0145561321996628
  3. Nigwekar SU, Weiser JM, Kalim S, Xu D, Wibecan JL, Dougherty SM et al. Characterization and Correction of Olfactory Deficits in Kidney Disease. J Am Soc Nephrol. 2017 Nov;28(11):3395-3403. doi: 10.1681/ASN.2016121308.
  4. Griep MI, Van der Niepen P, Sennesael JJ, Mets TF, Massart DL, Verbeelen DL. Odour perception in chronic renal disease. Nephrol Dial Transplant. 1997 Oct;12(10):2093-8. doi: 10.1093/ndt/12.10.2093.
  5. Bomback AS, Raff AC. Olfactory function in dialysis patients: A potential key to understanding the uremic state. Kidney International. 2011; 80(8): 803–805. doi: 1038/ki.2011.219
  6. Barisione C, Ghigliotti G, Canepa M, Balbi M, Brunelli C, Ameri P. Indoxyl sulfate: a candidate target for the prevention and treatment of cardiovascular disease in chronic kidney disease. Curr Drug Targets. 2015;16(4):366-72. doi: 10.2174/1389450116666141230114500.
  7. Raff AC, Lieu S, Melamed ML, Quan Z, Ponda M, Meyer TW et al. Relationship of impaired olfactory function in ESRD to malnutrition and retained uremic molecules. Am J Kidney Dis. 2008; 52(1):102-10. doi: 10.1053/j.ajkd.2008.02.301.
  8. 11th Report Of Indonesian Renal Registry 2018. Irr. Published online 2018:1-46.
  9. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003; 63(5): 1934-43. doi: 10.1046/j.1523-1755.2003.00924.
  10. Koseoglu S, Derin S, Huddam B, Sahan M. The effect of non-diabetic chronic renal failure on olfactory function. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;134(3):161-164. doi: 10.1016/j. anorl. 2016.04.022.
  11. Sirich TL, Fong K, Larive B, Beck GJ, Chertow GM, Levin NW et al; Frequent Hemodialysis Network (FHN) Trial Group. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the Frequent Hemodialysis Network Daily Trial. Kidney Int. 2017;91(5):1186-1192. doi: 10.1016/j.kint.2016.11.002.
  12. Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ Res. 2012; 111(11): 1470-83. doi: 10.1161/ CIRCRESAHA. 112.278457.
  13. Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci. 2017;185:23-29. doi: 10.1016/j. lfs. 2017 .07.027.
  14. Edamatsu T, Fujieda A, Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS One. 2018; 13(2):e0193342. doi: 10.1371/journal. pone. 0193342. 
  15. Landis BN, Marangon N, Saudan P, Hugentobler M, Giger R, Martin PY et al. Olfactory function improves following hemodialysis. Kidney Int. 2011;80(8):886-93. doi: 10.1038/ki.2011.189.
  16. Frasnelli JA, Temmel AF, Quint C, Oberbauer R, Hummel T. Olfactory function in chronic renal failure. Am J Rhinol. 2002;16(5):275-9. doi:10. 1177/194589240201600511
  17. Watanabe K, Watanabe T, Nakayama M. Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology. 2014; 44: 184-93. doi: 10.1016/j.neuro.2014.06.014.