Insight into Covid Associated Mucormycosis: A Prospective Study

Document Type : Original

Authors

1 Department of Otorhinolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, India.

2 Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.

10.22038/ijorl.2024.78990.3662

Abstract

Introduction:
The notable increase in cases of rhino-orbito-cerebral Mucormycosis during the COVID pandemic is alarming. Both share a common route of entry, the nasal mucosa, leading to speculation about whether similar receptors play a role in both diseases. We aim to compare the expression of ACE2 and TMPRSS2 in the nasal and paranasal sinus tissues among patients with COVID-19-associated Mucormycosis (CAM), COVID-19-negative mucormycosis (CNM), and healthy individuals.
 
Materials and Methods:
This prospective study included patients with CAM, CNM, and healthy individuals who underwent surgical management. Immunohistochemistry was performed in the sino-nasal tissue to detect the presence of ACE2 and TMPRSS2 receptors. The level was compared among the three groups.
 
Results:
The study encompassed 44 patients with CAN, 20 with CNM, and ten healthy individuals. ACE2 positivity was seen only in the apical cilia, with no significant difference among the groups (p=0.6). In contrast, TMPRSS2 positivity was seen in the cytoplasm and nucleus of epithelium and submucosal glands in addition to apical cilia. TMPRSS2 was increasingly expressed in patients with CAM compared to CNM (p=0.009) and the healthy group (p=0.002).
 
Conclusion:
The expression of TMPRSS2 receptors is elevated in patients with COVID-19-associated mucormycosis with no significant change in the expression of ACE2 receptors. This finding could account for the heightened susceptibility to infection by SARS-CoV-2 and the subsequent immune dysregulation, providing a fertile ground for Mucorales co-infection.

Keywords

Main Subjects


  1. Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41(5):634-653. doi:10.1086/432579
  2. Skiada A, Pagano L, Groll A, et al. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect. 2011;17(12):1859-1867. doi:10. 1111/j. 1469-0691.2010.03456.x
  3. Sridhara SR, Paragache G, Panda NK, Chakrabarti A. Mucormycosis in immunocompetent individuals: an increasing trend. J Otolaryngol. 2005;34(6):402-406. doi:10.2310/7070.2005.34607
  4. Prakash H, Ghosh AK, Rudramurthy SM, et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med Mycol. 2019;57(4):395-402. doi:10. 1093/ mmy/ myy060
  5. Corzo-León DE, Chora-Hernández LD, Rodríguez-Zulueta AP, Walsh TJ. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med Mycol. 2018;56(1):29-43. doi:10.1093/mmy/myx017
  6. Guinea J, Escribano P, Vena A, et al. Increasing incidence of mucormycosis in a large Spanish hospital from 2007 to 2015: Epidemiology and microbiological characterization of the isolates (published correction appears in PLoS One. 2020 Feb 12;15(2):e0229347). PLoS One. 2017; 12(6): e0179136. Published 2017 Jun 7. doi: 10. 1371/ journal.pone.0179136
  7. Marty FM, Ostrosky-Zeichner L, Cornely OA, et al. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis. 2016;16(7):828-837. doi:10.1016/S1473-3099(16)00071-2
  8. Shoham S, Magill SS, Merz WG, et al. Primary treatment of zygomycosis with liposomal amphotericin B: analysis of 28 cases. Med Mycol. 2010; 48(3):511-517. doi: 10.3109/ 13693780903 311944
  9. Legrand M, Gits-Muselli M, Boutin L, et al. Detection of Circulating Mucorales DNA in Critically Ill Burn Patients: Preliminary Report of a Screening Strategy for Early Diagnosis and Treatment. Clin Infect Dis. 2016;63(10):1312-1317. doi:10.1093/cid/ciw563
  10. Revannavar SM, P S S, Samaga L, V K V. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world?. BMJ Case Rep. 2021; 14(4): e241663. Published 2021 Apr 27. doi:10.1136/bcr-2021-241663
  11. Gamaletsou MN, Sipsas NV, Roilides E, Walsh TJ. Rhino-orbital-cerebral mucormycosis. Curr Infect Dis Rep. 2012;14(4):423-434. doi: 10. 1007/ s11908-012-0272-6
  12. Abbasi AZ, Kiyani DA, Hamid SM, Saalim M, Fahim A, Jalal N. Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2. J Med Virol. 2021;93(7):4205-4218. doi:10.1002/jmv.26911
  13. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. Published 2020 Mar 17. doi:10.1128/JVI.00127-20
  14. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol. 2019;93(6):e01815-18. Published 2019 Mar 5. doi:10.1128/JVI.01815-18
  15. Mehta S, Pandey A. Rhino-Orbital Mucormycosis Associated With COVID-19.  Cureus. 2020;12(9):e10726. Published 2020 Sep 30. doi:10.7759/cureus.10726
  16. Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020; 50(12): 1313-1324. doi:10.1111/cea.13746
  17. Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 2014;22(3):120-127. doi:10.1016/j.tim.2014.01.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Cassone A, Cauda R. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS. 2012;26(12):1457-1472. doi: 10. 1097/QAD.0b013e3283536ba8
  2. Pagano L, Busca A, Candoni A, et al. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev. 2017;31(2):17-29. doi: 10.1016/j.blre.2016.09.002
  3. Schauwvlieghe AFAD, Rijnders BJA, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med. 2018; 6(10):782-792. doi:10.1016/S2213-2600 (18) 30274-1.
  4. Jaiswal AS, Sikka K, Bhalla AS, et al. Facial neuritis in coronavirus disease 2019 associated mucormycosis: study on clinico-radiological correlates. J Laryngol Otol. 2022;136(4):349-353. doi:10.1017/S0022215121003510
  5. Singh A, Goel G, Khan M, Kanodia A, Sikka K, Thakar A. Factors affecting clinical outcome in COVID-associated rhino-orbito-cerebral mucormycosis (CAROM) patients-An ambispective, single-arm, observational study (published online ahead of print, 2023 Jul 16). Am J Otolaryngol. 2023;44(6):103975. doi: 10. 1016/j. amjoto. 2023.103975
  6. Morton CO, Griffiths JS, Loeffler J, Orr S, White PL. Defective antifungal immunity in patients with COVID-19. Front Immunol. 2022;13:1080822. Published 2022 Nov 30. doi: 10.3389/ fimmu. 1080822
  7. Lee IT, Nakayama T, Wu CT, et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun. 2020; 11(1): 5453. Published 2020 Oct 28. doi: 10. 1038/ s41467-020-19145-6.