Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Document Type: Original


1 Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.

2 Institute of Mechatronic Systems, Leibniz University Hannover, Hannover, Germany.

3 Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany.


Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.
Materials and Methods:
Three fresh human explanted temporal bones were trimmed, chemically decalcified with ethylenediaminetetraacetic acid (EDTA), and mechanically drilled under visual control using OCT in order to reveal the remaining bone shell. After confirming decalcification with a computed tomography (CT) scan, the samples were scanned with OCT in different views. The oval window, round window, and remnant part of internal auditory canal and cochlear turn were investigated.
Preparation of the labyrinthine bone and visualization under OCT guidance was successfully performed to a remaining bony layer of 300µm thickness. OCT images of the specimen allowed a detailed view of the intra-cochlear anatomy.
OCT is applicable in the well-prepared human inner ear and allows visualization of soft tissue parts.


Main Subjects

1. Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC. CT and MR Imaging of the Inner Ear and Brain in Children with Congenital Sensorineural Hearing Loss. Radiographics. 2012; 32(3):683–99.

2. Hudgins PA. Inner Ear Imaging: More than “Rule Out Acoustic”. Am J Neuroradiol. 1998; 19: 1807-8.

3. Postnov A, Zarowski A, De Clerck N, et al. High Resolution Micro-CT Scanning as an Innovative Tool for Evaluation of the Surgical Positioning of Cochlear Implant Electrodes. Acta Otolaryngol. 2006;126(5):467–74.

4. Mohebbi S, Rau T, Meyer H, Lenarz T, Majdani O. Imaging of the Human Inner Ear with Scanning Laser Optical Tomography (SLOT). In: Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie. 85. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie. Germany; 2014.

5. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science. 1991 Nov 22; 254(5035):1178–81.

6. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21(11):1361–7.

7. Böhringer HJ, Boller D, Leppert J, et al. Time-domain and Spectral-domain Optical Coherence Tomography in the Analysis of Brain Tumor Tissue. Lasers Surg Med. 2006;38(6):588–97.
8. Drexler W, Fujimoto JG. Optical Coherence Tomography Technology and Applications. Berlin Heidelberg: Springer; 2008.

9. Staecker H. Do KL, Jafir S. Optical coherence tomography: Temporal Bone Applications. Otolaryngol Head Neck Surg. 2004;131(2):P160.

10. Just T, Lankenau E, Hüttmann G, Pau HW. Optical Coherence Tomography of the Oval Window Niche. J Laryngol Otol. 2009;123(6): 603– 8.

11. Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ. Imaging the Human Tympanic Membrane Using Optical Coherence Tomography in Vivo. Otol Neurotol. 2008;29(8):1091–1094.

12. Pau HW, Lankenau E, Just T, Behrend D, Hüttmann G. Optical Coherence Tomography as an Orientation Guide in Cochlear Implant Surgery? Acta Otolaryngol. 2007; 127(9):907–13.

13. Mohebbi S, Diaz JD, Kühnel MP, et al. Optical Coherence Tomography (OCT) Guided Inner Ear Decalcification, Fast and Safe Method. Biomed Eng / Biomed Tech. 2014;59(s1):564–7.

14. Lin J, Staecker H, Jafri MS. Optical Coherence Tomography Imaging of the Inner Ear: a Feasibility Study with Implications for Cochlear Implantation. Ann Otol Rhinol Laryngol. 2008;117:341–6.

15. Wong BJ, Zhao Y, Yamaguchi M, Nassif N, Chen Z, De Boer JF. Imaging the Internal Structure of the Rat Cochlea Using Optical Coherence Tomography at 0.827 microm and 1.3 microm. Otolaryngol Head Neck Surg. 2004;130(3):334–8.

16. Gao SS, Xia A, Yuan T, et al. Quantitative Imaging of Cochlear Soft Tissues in Wild-type and Hearing-impaired Transgenic Mice by Spectral Domain Optical Coherence Tomography. Opt Express. 2011;19(16):15415–28.

17. Tona Y, Sakamoto T, Nakagawa T, et al. In Vivo Imaging of Mouse Cochlea by Optical Coherence Tomography. Otol Neurotol. 2014; 35 (2):e84–9.

18. Zhang Y, Pfeiffer T, Weller M, et al. Optical Coherence Tomography Guided Laser Cochleostomy: Towards the Accuracy on Tens of Micrometer Scale. Biomed Res Int. Epub 11 Sep 2014. doi:10.1155/2014/25

19. Hee Yoon Lee, Patrick D. Raphaelb, Jesung Parkc, Audrey K. Ellerbeea, Brian E. Applegatec and John S. Oghalaib, Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea, PNAS. 2015;112(10):3128–3133.

20. Iyer JS, Batts SA, Chu KK, et al, Micro-optical coherence tomography of the mammalian cochlea. Sci Rep. 2016;6:33288.

21. Ramamoorthy S, Zhang Y, Petrie T, et al, Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography. J Biomed Opt. 2016; 21(2): 25003.